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7. ([Jo] p.93, #6) Let fi(z) be a sequence of
continuous non-negative functions defined in R"
such that

[ e =15 fule) =0for fo €] > 1.

1 Distributions and Fundamenshow that frx — d¢ (in the sense of distributions)

tal solutions

1.1 Distributions

1. Let f(z) =2*+1forx > 0 and f(z) =0 for
x < 0. Compute the derivative of f in the sense
of distributions.

2. ([Jo] p-92, #6) Suppose f € (R). Define
fla+h) — fz)

Jn(@) = N
Show that %in% fn = f’ in the sense of distribu-
tions.
3.

(a) Let T be a distribution in R2. Prove that
D.D,T = D,D,T. This justifies the multi-
index notation for distributions since D.,T" =
D,,T.

(b) More generally, given any distribution T
and multi-indices «, 3, D*PT = D*DAT =
DPDeT.

4. ([Ra] p-257, #8, 9, 10) Let x be the characteristic
function of the first quadrant on R?, {(z,y); = >
0,y > 0}. Compute

(a) Oxx and Oyx.

(b) 020yx.

(c) repeat this for y the characteristic func-
tion of {(x,y); zy > 0}.

(d) repeat this for f(x,y) = zy/(x? + y?) for
x,y # 0.

Hint: away from 0 use calculus.
5. ([Ra] p.257, #2) Let u(x) = |sin(x)|. Compute
u(™) is the distribution sense.

6. ([Io] p.210, Theorem] 5.2) Let f : R — R be
a bounded, C! by parts function with a finite

number of discontinuity points located at =1, . .., .

Denote df /dx the derivative in the usual sense
of f and suppose that it is bounded. Then, in
the sense of distributions,

k
£ =TS ) = Pl

Obs: f(z+) and f(z—) are the lateral limits (left and
right) at the point z € R.

when k£ — oo.
8. Let ¢ € L'(R") such that

/n o(x)de = 1.

Define ps(z) = s ™p(x/s) for 0 < s < 1.

(a) ([lo] p-353, #4; [Ra] p-250; [Ev] Appendix C.4)
Suppose ¢(x) > 0. Show that ps — Jdy (in the
distribution sense) when s — 0%.

(b) ([1U] Fall 1988) Suppose ¢ € C§°(R™). Let
f € LY(R") be a continuous function such that
lim f(x) = 0. Determine whether the convolu-

tion @, * f converges to f uniformly as s — 0F.

9. ([Ra] p.257, #4) Find the most general solution
T € D'(R) of the following equations:

(a) 2T =0; (b) 27" =0

(c) 2’°T =6; (d) T'=9.

10. ([TU] Winter 1983) Let T" be a distribution such
that 7" = 0 on R. Show that T is a constant.
Hint: choose o smooth with compact support such that
Jg @ = 1. Note that any ¢ € D(R) can be written in the
form ¢ = g+ (Jp #) with g € D(R) and [, g = 0.

11. The function f(x,y) = zy(z? —y?)/(2? +
y?), for (x,y) # 0 and f(0,0) = 0 is a well known
example from calculus of a function such that
Dyyf # Dy, f. Compute D,y f in the distribu-
tion sense.

Hint: D,y f(0,0) = —1 and D, f(0,0) = 1.

12.

(a) ([F] p-190, #11.2) Let o(z) = e/1=2") for
|z] < 1, ¢(x) = 0 otherwise. Show that ¢ €
D(R) (C* with compact support).

(b) ([F] p-190, #11.3) use (a) to define p : R™ —
R in C*°(R") and support in |z| < 1 with p(z) >
0 and [, p(x) dz = 1;

(c) Let Q C R™ be an open set. Prove that
D(Q) #0.

13. (ITh] p.151, #1) If f € L) (Q) and T} = 0,
then f =0 a.e. (by definition Tf(¢) = [ fv).
14. ([1o] p.355, #12) (a) Prove that ¢ ¢ Lj_ .(R™).

(b) Prove that ¢’ is not a measure.

15. ([Th] p.151, #2) Prove that if v € D'(Q2) and
the support of v has zero measure, then there is
no f € L () such that Ty = u. (generaliza-
tion of (a) from last exercise).



16. ([Ra] p-249) Prove that a linear map T :
D(Q) — R is a distribution if and only if for
every compact K C {2 there is an integer n (de-
pending on K and T') and C € R such that for
all ¢ € D(Q) with support in K

T o < Cllgllcn-

Obs: If n does not depend on K we say that 7" has order
n. Note that ¢ may depend on K. This set is the dual
of CJ'(€2), denoted by C~" ().

Hint: the “if” part is easy; the “only if” can be proved by
contradiction using a sequence ¢, such that [T ¢p| > 1
and [l¢nllcn < 1/n.

17. (a) (Ra] p-250) prove that the distribution T
defined below is a distribution of infinite order
n(0,1): T-6 = 55 o) (1/k).

(b) ([Ra] p-258, #15) prove that the distribu-
tion T' defined below is a distribution of order 1
in R:

T-¢=>3,",1/n(6(1/n) — 6(0)).
Hint: Use that > (1/n)? < oco.
18. Define T- ¢ = > 70, ¢¥) (k).

(a) Prove that T defines a distribution in R.

(b) Prove that there is no f continuous and
§ € N such that T = fU) (j-th derivative). ([Jo]
p.92, #5)

(c¢) Confront (b) with the following theorem

(see [RS] chap. V) Let f € S'(R") (tem-
pered distribution), then there exist g contin-
uous, polynomial bounded, i.e.,

l9(x)] < C(1L+ |2

for some C > 0, k € N and |z| sufficiently large,
and a multi-index  such that f = 9%g. ([Io]
p.333)

19. Prove that the only distributions on R” with
support equal to the single point {0} are finite
linear combinations of the derivatives of §.

20. ([1U] Fall 1992) Let f € LP(R™) for 1 < p <
00, and let a € C°°(R™) have at most polyno-
mial growth at infinity. Prove that af € &'
(tempered distributions).

21.

(a) Let f € S(R) (space of Schwartz of C*,
rapidly decaying functions) such that f(0) = 0.
Prove that f(xz) = zg(z), for € R and g €
S(R).

Obs: This exercise generalizes the idea that a polynomial
with a root can be factored. ([Io] p.222, #6)

(b) Let f € S(R™) (space of Schwartz of C'*°
rapidly decaying functions) such that f(0) = 0.
Prove that

f@) =3 wig(@),

for x € R"™ where g; € S(R").
Hint: f(z) = [} & f(tz)dt. ([lo] p.354, #7)
22. ([Ra] p.257, #5) Let T be the distribution on

R™ defined by
|z]=1

(a) compute 9,,T;
Hint: Use Green’s theorem.

(b) compute AT.
23. ([1U] Fall 1982)

(a) Prove that the distribution 7' (known as
Cauchy principal value) defined below is a dis-
tribution of order 1 in R :

p(z)

T -p=Ilim dx.

=0 J1z)>e

(b) Let u(z) = log(x) for > 0 and u(z) =0
for z < 0. Compute v’ (in the distribution sense)

and relate in terms of (a).
Answer: u’ - ¢ =

1 oo
/ (o) — 9(0))/z dz + / o)/ d.
[0] 1

(c) Compute the derivative of log(|z|) € Lj_.(R).
24. ([Z] p.182 #2.9 (c) ) Let f : R — R be a
C' function that has zeros only in z1,...,zy.
Suppose that f'(z;) # 0 for all j. Give sense to
the identity

N
5(f(z)) = Zazj|f’<xj)|—1-

Hint: Change of variables. One consequence used often
in Physics is
o 5(1 + 5—(1

§(z2 — a2
(z a®) 27al

25. Various extensions are possible for distri-
butions (see references below in R. E. Edwards
“Functional Analysis”; Dover 1995):

(a) replace R™ by a real differentiable man-
ifold of class C*° (Schwartz [1] and [2] and de
Rham [1]);

(b) distributions acting on differential forms
of arbitrary degree rather then on functions (zero
degree differential forms): the so-called currents
of de Rham (de Rham [1]);

(c) replace R™ by a locally compact abelian
group (Riss[1]).



1.2 Fundamental Solutions

From [Wi] : In mathematics, a fundamental so-
lution for a linear partial differential operator L
is a formulation in the language of distribution
theory of the older idea of a Green’s function.
In terms of the Dirac delta function J, a funda-
mental solution f is the solution of the inhomo-
geneous equation Lu = 4.

Here f is a priori only assumed to be a Schwartz
distribution.

This concept was long known for the Lapla-
cian in two and three dimensions. It was inves-
tigated for all dimensions for the Laplacian by
Marcel Riesz. The existence of a fundamental
solution for any operator with constant coeffi-
cients — the most important case, directly linked
to the possibility of using convolution to solve an
arbitrary RHS — was shown by Malgrange and
Ehrenpreis.

The motivation to find the fundamental solu-
tion is because once one finds the fundamental
solution, it is easy to find the desired solution
of the original equation. In fact, this process is
achieved by convolution.

Fundamental solutions also play an impor-
tant role in the numerical solution of partial
differential equations by the boundary element
method.

Notice: The definition of fundamental solu-
tions for systems usually is not covered in liter-
ature.

Definition: Let § be the Dirac delta opera-
tor concentrated at the origin. We write 6(z—¢&)
for the Dirac operator concentrated at £. Let
L be any linear differential operator. We say
that @ is a fundamental solution with pole & if
L® = J; in the sense of distributions.

With the fundamental solution ¢ with pole
& = 0 one can solve Lv = f for any (smooth) f:
v = ® x f (convolution of ® and f).

This is true since L(® * f) = L(®) * f

ox f=f.
26. ([Jo] p.92) (a) Show that u(z) = 1/2|x—¢|is a
fundamental solution with pole £ of the operator
L = d?/dz?;

(b) Use it to solve u” = f.

Hint: H' = § (H is the Heaviside function).

27. ([Jo] p.92, #2) Show that

1;
0;

_ for v > &y > &y
u(z,y) = { otherwise.
is a fundamental solution with pole (&;,§,) of
the operator L = §%/0x0y in the xy-plane.

28. ([Z] p.179 #2.9 (a)) Show that

{

is a fundamental solution with pole 0 of the op-
erator L = d"/dx".

n—1
=k

(n—

0;

x>0,

u(x)

x <0,

29. ([Z] p-413, #5.1) Show that u(z) = 1/(27) exp(i\|z|)

is a fundamental solution with pole 0 of the op-
erator (reduced wave operator) L = d?/dz?+ \2.
Answer: u(x) = cos(A|z|)/(4x|z]).

30. ([1u] Fall 1990) Find all solutions u € D'(R)
of the differential equation u” +u = 4.

31. ([Co]) Show that u(z) = exp(—m|z])/(2m)
is a fundamental solution with pole 0 of the
Helmholtz 1-D operator L = —d?/dz*+m? with
m > 0.

1.3 Applications to PDE
1.3.1 Laplace equation

32. ([1U] Fall 1988) Let uw € D'(R™) and Au €
CE(R™) for some 0 < k < co. Show that u €
CkJrl(Rn).

33. ([1U] Fall 1989) Let f € C°°(R™) and suppose
T is a distribution that satisfies AT = f. Prove
that T € C°°(R"™).

Hint: Use the fact that if S is a distribution satisfying
AS = 0, then S is an harmonic function.

34. Prove that ®, the fundamental solution of
Laplace’s equation, satisfies A® = dy.

Hint: use theory of Laplace’s equation: it is not easy!

35. ([1U] Fall 1991) Compute a solution u of Au =
S in R? and S € D'(R?) is defined by

1
S-d):/o ¢y(x,0)dx

for ¢ € D(R?). Express u in closed form without
integrals.
Hint: u=® % S

1.3.2 Transport and Wave equations

36. ([Jo] p.92, #1) Show that for a continuous
function f the expression u = f(xz — ct) is a so-
lution in the sense of distributions of the (trans-
port) equation u; + cu, = 0.

Hint: Change coordinates y1 = = — ct,y2 = z. Take as
test function ¥ (y1)X (y2).

37. (1D wave eq)



(a) ([Jo] p-92, #3 and [1U] Fall 1980) Let H be the
characteristic function of [0, o], i.e., H(z) = 1
if x > 0 and H(z) = 0 otherwise. Prove that

u(x,t) = 1/2H(t — |z|)

is a fundamental solution of the 1D wave opera-
tor L = 0%/0t?> — 0% /022 in the xt-plane.

(b) Use it to show that a solution of the 1D
wave equation u; — uy, = f is given by

1 t Tz+s
U(M):Q/O/ fly,t = s)dyds.

Note that if we define 2 as the triangle on R?
with base on the x-axis given by [z — ¢,z +¢] and
vertices (z,t) then

1
e t) =5 [ Fns)dys.

38. (3D wave equation) Let T be a distribution
defined by

1 oo
T ¢o=— t=! / o(z,t)dS, | dt.
4 Jo < || =t (=:1)

(a) Show that

I )
CAn |z

18t = Ja))
A7 t ’

a spherical wave which emanates from the origin
and propagates at speed 1. The amplitude of
the wave is inversely proportional to the distance
from the origin.

(b) (|Z] p-182 #2.9 (¢) ) Show that T is a fun-
damental solution of the 3D wave equation

Ty — AT = .

(c) Use it to show that a solution of the 3D
wave equation u;; — Au = f is given by

’ dr B(x,t)

ly — |
1.3.3 Heat Equations

39. (3D heat equation)
(a) ([z] p-182 #2.9 (c) ) Show that
_ 1 =P/,
e ; t>0,
D(z,t) ={ (4nt)*/?
is a fundamental solution of the 3D heat equa-
tion
D, — AD = 4.

(b) Use it to show that a solution u(z,t) of
u; — Au = f is given by

lo—

' 1 _le—yl?
/0 (4n(t — )32 /]Rse W f(y, ) dy ds

40. Let Ki(x) = (4nt)"/? exp(—|z|?(4t)~1)
(heat kernel). Prove that K; — § in the dis-
tribution sense when t — 0+

Hint: Use the theory of the heat equation.

1.3.4 Other Equations

41. ([IU] Fall 1995) Let T" be a temperate distribu-
tion on R? satisfying AT + D, T+ D,T+T = 0.
(a) show that T' € C>°(R?);
(b) if T has a limit as ||(z,y)|| — oo, prove
that T'= 0.

42. ([1U] Winter 1992) The curl operator in two
dimensions acting on a vector field U(z,y) =
(u(z,y),v(z,y)) is defined as V x U = uy — v,.

(a) give a definition of what it means for a
n (not necessarily continuous) vector field U to
have curl zero in the sense of distributions.

(b) Let T be a smooth curve dividing R? into
two disjoint open regions ; and Q5. Suppose U
takes the form U = U; on 4 and U = Us on o,
with U and U are (different) constants vectors.
If U has curl zero in the sense of distributions,
describe as completely as possible the curve T.

43. ([1U] Fall 1993) Let 3 be a smooth hypersur-
face dividing R™ into two disjoint open regions
0 and Qg, Denote v = v(x) the unit normal to
3} pointing into 5. Suppose v : R” — R"™ solves
the equation divv(z) = b(z) for z € R"—X in the
classical sense, where b is a continuous function.
Assume furthermore that v € C(;) N C(Q2)
(but not necessarily in C(R™)!) with

I—’Ilgrmlefh U(OC)

vF (o) =

and

v(x).

v (:EO) - T—x0;TENS

for each xy € . Derive a necessary and suffi-
cient condition in terms of v+, v~ and v for v to
be a distribution solution on all R™.

2 Fourier Transform

2.1 General Theory

1. ([Th] p.168, #1) Compute the Fourier trans-
form of the following functions:
(a) f(t) = e~11* para A > 0.



(b) f(t) = P( )e=t*/2 onde P(t) é um polinémi®. (Inversion formula: Proof I) (Adaptaded from
(€) f(t) = X[a.5)(1), fungao caracteristica do [Io] p.183) Let g = Fg. Consider h, = gX(—a,q)-
intervalo [a, b] (a) Prove that lim, o he = G-
(d) f(t) = e, para A >0,t >0, f(t) = (b) Determine limg_, o b)) .
para t < 0. (c) Conclude that (g)¥ = g.
2. ([Ha] p.346, #9.4.6) Compute the Fourier trans- Hint: [ sin(z)/zdz = 7 as an improper Riemann

form of the function
ro={ §

Answer: sin(a&)/(w§).
3. ([lo] p.353, #2) Let f € L'(R"). Define,

|z| > a
|z| < a.

(Taf)(2) = f(x = a)
(Baf)(x) = " f(2),
ha(x) = f(x/X),

with z,a € R™, A € (0,00). Prove that

(@) (Taf)(€) = (Eaf)(E)-

(b) (Baf)(&) = (r-af)(E).

(¢) ha(€) = A" F(A¢).

(d) Show that (c) implies that functions with
a large support have Fourier transform with a
sudden peak near 0 and vie-versa. Observe that
the transform of Dirac’s delta is a constant, it
contains every frequency! ([Ha] p.347, #9.4.11 (c))

4. ([Ha] p.346, #9.4.3) Let F(§) be the Fourier
transform of f(x). Prove that if f(z) € R for all
x € R, then F(§) = F(—¢). (Z is the complex

conjugate of z).

5. Define Ff = f.

(a) Prove that F* = I (identity). ([Io] p.314)
Hint: Show directly (change of variables) that F2 =
F~2. Another proof is to use (a’).

(@’) Let Jh(x) = h(—x). Show that F? = J;

() Show that fV(z) = f(—x);

(b) Let y(x) = exp(—|z|?/2) for z € R™.
Prove that Fy = 7. ([lo] p.184, p. 194).

Hint: proof is NOT trivial: see next exercise.

(c) Use (a) to find all eigenvalues of F.
Answer: eigenvalues (—
where H,, are the Hermite polynomials

6. ([TU] Winter 1983) Let v(r) = exp(—22/2) for
xz € R. Show that:

(a) d/dx7y(§) = —£(8)-

E )) d/dx(v/w =0

7. ([Th] p.168,#2) Prove that L?(R") has an or-
thogonal decomposition
L*RYW=H oH  oH,&H_,;

such that q@z Ao for ¢ € H).

)™ with eigenfunctions e*””Z/QHn(a:),

integral, even though sin(x)/z ¢ L' (why ?). This is a
canonical example of a Riemann integrable function that
is not Lebesgue integrable: it is possible only because the
support of the function is not compact.

9. (Inversion formula: Proof IT)

(a) Determine X(_g,q)-

(b) Prove directly (computing the integral)
that ¥V = x.
Hint: cos(k€)/¢ is odd, therefore its integral in R is zero.
Use hint from last exercise to determine sin(k€)/&: be
careful when k& > 0 and k£ < 0.

(c) Use a density of stair functions in L(R)
to finish the proof.
10. ([Ta] p.202, #1) (Riemmann-Lebesgue Lema)
Show that if f € L!(R") then f(¢) — 0 as |¢] —
0. Show also that f € C(R™).
Hint: Use that D(R") is dense in L'(R"™) and integrate
by parts.

2.2 Distributions and FT

11. ([1U] Winter 1993) Let P(D) be a constant co-
efficient partial differential operator on R™. Sup-
pose P(i§) #0for all £ #0. If u € S’ (tempered
distributions) satisfies P(D)u = 0. Prove that u
must be a polynomial.

12. Let p be a polynomial in n variables, and
assume that the set {z;p(iz) = 0} is bounded.

(a) ([1U] Fall 1991) Prove that there exists a
tempered distribution E on R" such that p(D)E—
0 € S, the class of rapidly decreasing functions
(Schwartz space).

(b) ([TU] Fall 1994) Prove that if T is a tem-

pered distribution on R™ then there is a tem-
pered distribution E such that p(D)E — T €
C>®(R"™).
13. ([1U] Winter 1992) The Fourier transform of a
temperate distribution 7" is defined by T - ¢ =
T - ¢ for all test functions . Assume g is a
measure on R” with p(R™) < oo.

(a) prove that u is a temperate distribution;

(b) Prove that [ is (a function) given by

e) = 2n) 2 [ e au(a),

14. ([Io] p-355, #17) A Dirac ¢ distribution over
the sphere of radius a > 0 (used in problems of



quantum mechanics) is define, for ¢ € D(R)

Sa-@o=a""! / o(aw) dw.
Sn—1

(a) Prove that d, is a tempered distribution.
(b) Prove that its Fourier transform is

o~

6a(6) = a1t (2m) /2 / exp(—iaw - §) dw.
Sn—l

(¢) Compute (b) explicitly for n = 3.
Hint: The integral is invariant under rotations. Choose

cylindrical coordinates with the z axis parallel to &.

(d) Do the same for n > 2.

15. ([lo] p-360, #32) Let T (known as Cauchy
principal value) and S be defined by
T 9= lim 46 dz
e—0+ |z|>e T
—+oo
S-p= lim go(m) dx
e—0+ J_ T +1e

o0

(a) Prove that T and S are tempered distri-
butions.

(b) What is the relation between them? (Is
it T = S7)

(¢) Compute the Fourier transform of these
distributions.

16. (determining 5: Proof I

Let X(—q,a) be the characteristic function of
the interval (—a, a).

(a) Determine X(_q,q)-

(b) Prove that, in the sense of distributions,

1
lim —(_ = do.
all% QGX( a,a) 0

(c¢) Determine, using (a),

111—>H10 %X(fa,a)-
(d) Use (c) to prove that o(¢) = (2m)~1/2.
(e) Generalize last argument to prove that
6:(€) = (2m)7V/? exp(igz).
17. (determining 5: Proof IT) ([Ha] p.348, #9.4.18)
(a) Consider gg(z) = aexp(—B(z — z0)?).
Determine « such that [, gs(x)dz = 1.
(b) Show that limg_.o g3 = 04, (in the sense
of distributions).
(c) Determine limg_,o g3.

2.3 Applications to PDE
2.3.1 Heat Equation

18.

(a) Solve for @ for u; — Au = 0 in R™ with
u(z,0) = f(x).

(b) prove that the L? norm of u goes to zero
ast — oo.

19. ([1U] Fall 1994) Let u be the bounded solution
of the heat equation u; = Au in R™, ¢ > 0 and
u(x,0) = ¢(x) where ¢ € S the class of rapidly
decreasing functions (Schwartz class).

(a) Prove that there is a constant C' depend-
ing on ¢ such that

u(-t)|r2 < C(L+1)~4

(b) Assume in addition that [, ¢ = 0 and
prove that

u(,t)||pz < C(1L+ 1)~ 2/,

20. ([IU] Fall 1988) Let wu :
solve the heat equation u; = Aw, and satisfy
the initial condition u(z,0) = ug(z) € L*(R").
Given ¢ > 0 derive a bound for || Dgu(-, )| L2(rn)
in terms of ¢, , and ||uol| 2 (rn)-
21. ([Winter 1991] p.L)et u € C?(Q2 x (0,7]) N
C(Q x [0,7T)) be a solution to the problem u; =
Au—udforz € Q,t>0,u=0in9Q, u(x,0) =
f(z) for x € Q, where Q is a smooth bounded
domain in R”.

(a) Prove that |u|.2(t) < [|f][z2 for all ¢ €
(0,7,

(b) Prove that ||ul|pe(t) < || f]|L~ for all t €
0,77].

(c) Prove that the solution of this problem is
unique.

(d) Suppose f € L*N H!, prove that

R™ x [0,00) — R

lull 7 (8) + llullz (8) < IFITs + 1117

22. ([IU] Winter 1992) Let 2 C R™ be an open set
with smooth boundary and suppose u € C*°(2x
[0,00)) is a solution of the equation u; — Au = f
with « = 0 on 02 x [0,00). Assume that

lim
t—o0

/ f(z,t)*>dr = 0.
Q

Let ¢(t) = /Qu(yc,t)2 dx. Prove that ¢(t) — 0

as t — oo.

(d) Use (c) to prove that d,, (£) = (27) /2 exp(i&x).



2.3.2 Wave Equation

23.

(a) Solve for u for uy — Au = 0 in R™ with

u(z,0) = 0 and us(z,0) = g(z).

Answer: @ = g(£) sin(|¢[t)/[¢]-
(b) prove that the L? norm of u is preserved.
(c) determine u for R.

Hint: X[_¢,¢(§) = sin(|€]t)/(w[E]).

(d) Solve for @ for uy — Au = 0 in R™ with
u(z,0) = f(x,0) and us(z,0) = g(x) and show
that

lullz = 1122 + llgllz-

24. ([1U] Winter 1995) (equipartion of energy prin-
ciple) Let u be a solution of the wave equation in
R"™ uyy = Aw with initial data v = g and u; = h.
Suppose that g,h € S, the Schwartz class of
rapidly decaying functions Define the kinetic
energy by k: = [pui(z t)dz and the potential
energy as p(t) = [p(Vou)?(z, t)dz. Prove that

lim p(t) = Jim k() =

t—o0

2 (0(0) + K(0)).

Hint: 2sin?(z) = 1 — cos(2z), 2sin(z) cos(z) = sin(2z)
25. ([IU] Fall 1992) Consider the solution of the
3D wave equation u;; = Awu with initial data
u=0and u; = h € C§°.

(a) Prove that there is a positive constant C
such that

lim
t—o0 R3

u?(z,t)de < C.

Hint: 2sin?(x) = 1 — cos(2z)
(b) Prove that there is a positive constant C;
such that
t- max lu| > Cy

for all sufficiently large ¢.

26. ([1U] Fall 1995) Consider the solution u €
C* of the wave equation in R”, uy — Au =0
for t > 0, u(z,0) = f(z), ue(x,0) = g(x), with
fi9€Cg.

(a) for n > 3, show that ||u|| 12(¢) has a finite
limit as ¢ — oo, and identify that limit. Show
that there exists a constant C independent of
n, f, g such that

lullZ2 () < 11172 + llglZ2 + CllglZ:-

(b) for n < 2, show that ||u||2(¢) has a finite
limit as ¢ — oo if, and only if, [, g = 0, in which
case, there exists a constant C' independent of
n, f, g such that

lullZ2(t) < 1172 + llgliz2 + Cllzgl 7.

27. ([IU] Fall 1993) Assume ¢ is smooth and in
LY(R™). Let wu(&,t) be the Fourier transform
(with respect to x) of the solution u of the wave
equation in R™, uy —Awu = 0 for t > 0, u(z,0) =
0, us(x,0) = g(z). Show that the LP norm of
u(-,t) at time ¢ for p > n is bounded by a con-
stant times ¢'~"/P.

28. ([1U] Winter 1995) Consider the solution u €
C®° of the inhomogeneous wave equation in R",
ug — Au = f for t > 0, u(z,0) = u(z,0) =
0, with f € S, the Schwartz class of rapidly
decaying functions. Prove that

llull2®n x(0,17) < CllfllL2Rn x[0,17)-

29. ([Ta] p.221) Let R(,€) = (2m)~"/2|¢|~ sin(t|¢]),
where R(t,x) is the fundamental solution of the

wave equation for initial data u(0, 2) = 0, u:(0, x) =

do. Prove that:

(a) R(t,z) = 0 for |z| > |t| (finite propaga-
tion speed);

(b) for n = 2, R(t,z) = c(t*>— |z|?)~'/?sgn(t)
for |z| < |t];

(c) for n =3, R(t,z) = (4wt)~16(|x| — |t]).

2.3.3 Laplace Equation

30. ([GL] p-305, #5) In 2D solve Au = 0 for y > 0,
xz € R and u(z,0) = f(z) for z € R.
Answer: u(z,y) = y/m [ f(s)ds/((z—s)2+y?) fory > 0,
the classical Poisson integral formula.
31. ([Gu] p.187)
(a) Solve for @ for —Au = f in R™.
Answer: @ = f(€)/|¢[?
(b) Show that (1/|§| N
(¢) Show that u(z) = (4
yldy

1/( 47T|$D in R.
™) e F W)/l -

2.3.4 Other Equations

32. ([Ha] p.358, #9.5.3)
(a) Solve the diffusion equation with convec-
tion

ot Oz? cax
u(z,0) = f(x)

for z € R.
(b) Solve the same equation with u(z,0) =

d(x). Sketch solutions for different values of ¢.

What is the meaning of the convection term cg“

9
33. ([Ha] p.358, #9.5.7) Solve using Fourier trans-
form, obtaining a formula appearing f, the lin-
earized KdV

U = klggq; forz eR



u(z,0) = f(x).

34. ([1U] Winter 1991) Consider the problem u; =
—Uggry — QUgz, u(z,0) = f(z), where a is a pos-
itive constant and f € L' N L2.

(a) obtain an integral representation for the
solution;

(b) use it to show directly that u € C*°(R x
RT).
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